
I I II U I946



~7-~ r~t~ .rcCr" t ' SOFTWARE FALT TOLERANCE
ITBML rKC;oOTlL STUDY CCY'4TRACT OVHER\IE

YiGKF~ANTEXECUTIVE,N,

~) r~%flyOr DEFENCE,

-PAI34E, MAI

VVO9 23
q$z0



ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 4114

THE APPLICATION OF SOFTWARE FAULT TOLERANCE TO
AIR TRAFFIC CONTROL:

STUDY CONTRACT OVERVIEW
June 1988

Author: L N Simcox

SUMMARY

As part of its software engineering research for the Civil
Aviation Authority (CAA), the ATC systems research division
at RSRE initiated a study contract on the application of
software fault tolerance to ATC systems. This memorandum
gives an overview of a study contract in which a
requirements analysis of the London Air Traffic Control
Centre (LATCC) was developed using the CORE method with
automated support. This was then taken as the basis for a
MASCOT design of the LATCC Radar Data Processing subsystem.
This design was converted into one with the software fault
tolerant features of Recovery Blocks in a MASCOT-like
environment.

CARDPB Ref 2.4.1.1
RSRE Task 900
CAA Sponsor: Director of Projects and Engineering DPE(R&DP)
CAA Liaison: S C Willmott Hd DPla

J Scott DPla
B Bradford RD1

This memorandum reflects the views of the author. It is not
to be regarded as a final or official statement by the UK
Civil Aviation Authority.

Copyright
C

Controller HMSO London 1988

Work done under contract to the UK Civil Aviation Authority

S _______________________________



THE APPLICATION OF SOFTWARE FAULT TOLERANCE TO
AIR TRAFFIC CONTROL:

STUDY CONTRACT OVERVIEW

CONTENTS

1. INTRODUCTION

2. BACKGROUND

3. STUDY ACTIVITIES
3.1 LATCC CORE analysis
3.2 High level design - MASCOT
3.3 Detailed design - PDL
3.4 Fault tolerance design

3.4.1 High level design - Dialogues
3.4.2 Detailed design - Recovery blocks

4 STUDY ASSESSMENT AND RECOMMENDATIONS
4.1 Fault tolerance assessment
4.2 CORE assessment
4.3 Recommendations

5 CONCLUSIONS Aceession For
NTIS GRA&I

6 ACKNOWLEDGEMENTS DTIC TAB
Unannounced 0

7 REFERENCES Justisaatio-

APPENDICES
A.1 Overview of software fault tolerance Distribution/
A.3 Distribution of effort -Dt
A.2 Size of structured English - PDL Availability Codes

Avail and/or
Dist Special

FIGURES

1 LATCC viewpoint structure

2 Radar Data Processing Subsystem - MASCOT



Page 1

1 INTRODUCTION

Modern Air Traffic Control (ATC) systems are dependent on
highly reliable computer based systems. This dependency is
increasing with the growing volume of air traffic, making
the control task after a system failure more difficult and
prone to safety problems. Somewhat paradoxically, the
addition of extra functionality to help air traffic
Controllers with increased traffic implies even more
reliance on the ATC computer system and, in turn, creates
the need for even higher reliability and availability on new
and evolving systems.

The Civil Aviation Authority (CAA) is aware of these
problems and to help it keep both abreast of current
techniques and methods, and assess their relevance to
current and future projects and plans, it sponsors a
research and development programme in various software
engineering topics. Part of this programme is carried out
in the ATC systems research division at RSRE Malvern and one
item in the programme includes an investigation into
software fault tolerance as a means of achieving high
reliability.

Fault tolerance is about making use of component or
information redundancy and is one of two approaches to
achieving reliability in systems. The other approach is
fault prevention which is concerned with using methods,
techniques and technologies that aim to avoid introducing
faults into the implementation, including removal of faults
found during testing. Specifically software fault tolerance
is about using software redundancy to minimise the effects
of software design faults, recognizing that complete fault
prevention is beyond the state of the art. In some
instances, software redundancy may provide masking of
hardware malfunction but that is not normally its prime
purpose.

The RSRE research programme on software fault tolerance

was mapped out to follow two lines of research:-

1 Study actual applications and existing research,

2 Study the applicability to Air Traffic Control (ATC)
systems.

This report provides a summary of work on the second
topic carried out under contract by RMCS-Cranfield. A more
detailed account of the work is given in the contractors
final report (reference lf). The other aspects of the
investigation into software fault tolerance will be covered
in a subsequent RSRE memorandum (number 4237).

j _



Page 2

2 BACKGROUND

Initial investigations into software fault tolerance
revealed that a significant amount of theoretical work had
been carried out but that practical aspects had been
confined largely to experiments of an academic nature on
small scale software. There were some exceptions to this
situation, two of which are worth mentioning here. The
first is the use of functionally equivalent, but separately
designed, software for the control of flaps and slats in the
A310 aircraft (references 12,13): this is one of the few
examples of software fault tolerance application in a real
operational system. The second example involved a much more
complex piece of software in an experimental Naval command
and control system using the software fault tolerance
recovery blocks techniques (reference 3 and appendix 1).
This research was carried out at Newcastle University with
the specific aim of evaluating the software fault tolerance
techniques developed there. The success of the experiment
in terms of increasing reliability, and the similarities
between this command and control system and the London ATC
Centre (LATCC) system suggested a similar experiment would
be valuable in the ATC context.

With limited RSRE resources, discussions with Newcastle
University on their possible participation were undertaken
but were abandoned because of their resourcing problems at
that time. However one of the leading designers of the
Newcastle experiment, who was then at RMCS, was approached
with the idea and responded with a proposal to study the
application of the Newcastle techniques to LATCC. The
essence of this proposal was to perform a limited
requirements analysis of LATCC from which a subsystem would
be selected for application of the fault tolerance design.
The study would be conducted with an employee of the MARI
company who had also been involved in the the Newcastle
work, and was scheduled to last about a year and take about
one man-year of effort. A contract based on the proposal
was agreed between CAA and RMCS with the funding being
shared between the NATS Directorates of Data Processing (now
D PE(R&DP)) and the Chief Scientist and work began in
October 1985.

An overview the work carried out during the study is
given in Chapter 3, and the assessment and recommendations
of the contractor are summarised in Chapter 4. For a more
detailed account the reader is referred to the technical
reports and final report listed in reference 1. The final
report also provides a brief account of MASCOT, the CORE
requirements method, and the software fault tolerant
techniques used in the study. For convenience, a summary of
the relevant software fault tolerance principles is provided
in Appendix 1 of this memorandum.



Page 3

3 STUDY ACTIVITIES

This chapter describes the main activities listed below:

1 A limited requirements Analysis of LATCC using the CORE
method (reference 8).

2 A MASCOT (reference 7) design of the Radar Data and
Flight Plan Processing subsystems.

3 A detailed design of the Radar Data Processing
subsystem using a high level Structured English design
language.

4 Application of Fault Tolerance,

4.1 Conversion of the Radar Data Processing MASCOT
subsystem design into one with fault tolerant features
based on Recovery blocks (reference 2 and appendix 1).

4.2 Detailed design of the Recovery Blocks using the
same design language as step 3.

Note the contractor's final report breaks the work into
eight tasks, but the partitioning chosen here is thought to
be more appropriate for this summary document. Appendix 2
gives the nominal distribution of the contractor's effort
between the tasks. Some assistance in devising the
acceptance tests (para.3.4.2) and in the cost modelling
exercise (para.4.1) was provided by the author.

3.1 LATCC CORE analysis

The objective here was to provide the contractor with an
overall understanding of LATCC and with a set of
sufficiently detailed requirement specifications for those
parts of LATCC which would be represented in a trial
application of software fault tolerance design techniques.
The analysis was carried out following the procedures and
guidelines of the CORE method (reference 8). Essentially
the CORE method requires the system being analysed to be
decomposed into a multi-level hierarchy of viewpoints called
the viewpoint structure. Viewpoint is the name used by CORE
for what is in effect a logical subsystem. In general,
viewpoint structures are not unique. The viewpoint
structure arrived at during the CORE analysis of LATCC is
given in figure 1.

A viewpoint can then be analysed in terms of its
processing actions and data flows to and from other
viewpoints. Internal data flows, control of the execution
of actions, and time ordering of actions are also
determined. Only those viewpoints relevant to the problem
in hand need be subjected to such a detaile analysis, and



Page 4

those that are are indicated using a solid outline in the
viewpoint structure diagram. A given transaction will
normally involve processing by actions from several
viewpoints and an analysis of the processing thread can be
made to validate the transaction. Because of the large
number of transactions that are possible, analysis of such
threads is usually limited to performance or reliability
critical transactions.

Information gained in this analysis was captured using
a graphical workstation with automated support for CORE
through a rather immature software package called the
Analyst running on an Apple Macintosh computer. The
information was obtained by interviews with experienced
LATCC staff, supported by observations of the LATCC
operational system and by various documents.

A subsidiary objective of the study was to gain
experience with the requirements analysis method CORE and an
associated commercial computer workbench to support the
method. A review of how the CORE method and it support tool
were used was conducted under the guidance of experienced
CORE users from ARE.

3.2 High level design - MASCOT

The objective of this task was to derive a MASCOT design for
a demonstrator system based on the CORE analysis. Initially
it appeared that the it might be possible to provide some
reasonably mechanical translation from the activities
defined in the viewpoints of the CORE analysis to the
activities of a MASCOT ACP (activities, channels and pools)
diagram. While such a derivation appears to have been
achieved by BAe who took into account some implementation
considerations in their particular CORE analysis, in this
study it was found necessary to obtain a MASCOT design from
the information gained during the LATCC analysis rather than
directly from the resulting CORE documents. This approach
was adopted partly because the LATCC CORE model largely
ignored implementation issues which the MASCOT design needed
to consider, and partly because of the complexity of the
LATCC system. Validation of the MASCOT design was done by
checking the correspondence back to the CORE requirements.

MASCOT ACP diagrams for both Plight Plan Processing
(FPP) and Radar Data Processing (RDP) were produced. The
one for RDP is shown in figure 2 where the interaction with
other subsystems is accomplished using MASCOT channels. To
minimise interactions between FPP and RDP, the Flight Plan
data base informs the RDP (and FPP) subsystems of updates
relevant to their processing.



Page 5

There were only sufficient funds to enable one of the
MASCOT subsystems to be designed in detail and the RDP
subsystem was selected for its real-time characteristics.

3.3 Detailed design - PDL

The object here was to provide a detailed design of the RDP
MASCOT activities and intercommunication data channels.
This was done using a pseudo English Program Design Language
(PDL) down to a level of detail which would enable an
implementation in a high level programming language such as
Pascal to be carried out with little more than a syntactic
translation. Much of the information for this task had to
be obtained from a significant informal analysis since the
CORE analysis had not reached the required level of detail.
Tht size of the PDL is indicated in the statistics given in
the appendix 3.

3.4 Fault tolerant design

Here the objective was to modify the MASCOT design and the
detailed design of the RDP subsystem to include the fault
tolerant features of the scheme described in appendix 1.
This scheme achieves redundancy by allowing module(s) of an
'alternate' design, but ostensibly to the same
specification, to execute when an executing module fails its
acceptance test. The primary module, its alternates, and
acceptance test is called a recovery block. Before
executing an alternate, the System State must be restored to
that just before execution of the primary module. The need
to restore to such recovery points entails additional
coordination constraints on a MASCOT design otherwise, for
example, two cooperating activities may never be able to
recover to the same consistent state other than the initial
system state. To overcome such problems, a common recovery
point is enforced for pre-defined groupings of MASCOT
activities and IDAs (intercommunication data areas), these
groupings are called 'dialogues'. Dialogues may be nested.

3.4.1 High level design - dialogues

The outer-level dialogues for the RDP subsystem were
determined from an examination of the interaction of the
MASCOT activities, while the inner ones were deduced after
deciding which modules within the activities should be made
fault tolerant by converting them into recovery blocks. The
outer dialogues are used to move subsystem-wide recovery
points along in time rather than for recovery block
purposes.



Page 6

3.4.2 Detailed design of recovery blocks.

Two criteria were used in deciding where to place
recovery blocks. The first was for complex functions, eg.
position and velocity smoothing, and the second was for
functions involving significant updating of the Track Table
in order to ensure Track Table restoration should corruption
occur.

The majority of the recovery blocks were designed on
the principle that alternates should be degraded versions of
the primary module, i.e. simpler algorithms were used.
This is normally satisfactory where frequently refreshed
data is involved as in the case of radar data, but for
high-integrity data flows involving Flight Plan Data full
function alternatives were preferred.

The acceptance tests were devised, as far as possible,
to be independent of the algorithm used in the primary and
alternate modules. They were simple in form, and many made
use of comparisons between old and new track parameters,
while others were based on reasonableness checks on values
of data items.

The detailed designs of the recovery blocks were
produced using PDL.

A review was conducted to validate both the application
of fault tolerance techniques and ATC functionality.



Page 7

4 STUDY ASSESSMENT AND RECOMMENDATIONS

4.1 Fault Tolerance Assessment

The production of both high level and low level designs
based on dialogues demonstrated that software fault
tolerance techniques could be applied to a LATCC-like
system. Issues of software reliability improvements,
run-time overheads and costs of building a dialogue machine
with its recovery mechanisms, could not be addressed within
the limited scope of the contract and a Demonstrator is
proposed for this purpose.

It was found that some minor refinements to the
original dialogue scheme (reference 4) were needed for this
application.

Initial ideas on the interaction of dialogues across
large-scale systems indicated further research was needed in
this area.

The strategy (see section 3.4.2) for placing recovery
blocks was in accord with previous experience (references 3
and 4), but the ability to create effective acceptance tests
and alternate modules remains a difficult area for designers
of recovery blocks. Analysis of the acceptance tests
devised during the contract showed that many of the
reasonableness comparisons could be effected using strong
typing such as that provided by the Ada programming
language. A difficulty encountered in the design of the
alternates was that the functional specifications were
contained within the PDL algorithms of the primary, and not
as separate non-algorithmic specifications. Natural English
abstraction was employed to overcome this, although it would
have been preferable if the LATCC system functional
specifications had been non-algorithmic in the first place.

A comparison of the size of the RDP application
software with and without fault tolerance was obtained by
comparing the lines of PDL in the two cases:

Lines of PDL without fault tolerance - 2555

Lines of PDL with fault tolerance - 3550,

representing a 39% increase to add fault tolerance features.
Assuming an expansion factor of about 15-20% on conversion
from PDL to Pascal, costs of the ATC application software
were estimated using a cost model. It was emphasised that
the proposed Demonstration system would also require a
Flight Plan database, Flight Plan processing software,
consoles, and a run time environment with a recoverable
MASCOT machine.

- ! -



Page 8

4.2 CORE assessment

A subsidiary objective of the project was to assess the CORE
method for defining ATC requirements, and how CORE
specifications are mapped into MASCOT design. Particularly
useful features of CORE were its consistency checking and
its ability to handle manual functions. It was concluded
that the systematic nature and graphical notations of CORE
enabled high quality requirement specifications to be
produced. However it was felt there was a need for some
further refinement of the method, such as how to handle
databases, together with better automated support. The
System Designer's CORE Analyst package running on Macintosh
XL used in the project was considered inadequate both in
performance and functionality. Guidance in defining the
lower levels of the viewpoint structure would have been
helpful.

On the mapping from CORE to MASCOT the view taken was
that requirements capture and design should be disjoint
tasks. Design validation, therefore, should be based on
correspondence checking back to the requirements, and this
should be supported in any future integrated CORE/MASCOT
environment.

4.3 Recommendations

The six recommendations of the final report are summarised
below:-

i) A Demonstrator, based on the work done in the
project, should be constructed to evaluate the
cost-effectiveness of the technology for the ATC
application. Ada should be used.

ii) The application of Formal specification techniques
for recovery blocks should be investigated.

iii) The development of an integrated CORE/MASCOT
support environment with user-defined consistency
checking, preferably integrated with Ada, should be
investigated.

iv) An education programme should be set up to educate
relevant CAA staff on modern software engineering
methods and tools, such as those encountered in this
study.

v) Further research on extending the dialogue scheme to
large scale systems should be carried out.

vi) CAA should develop their own in 'house standard'
for using the CORE method.



Page 9

5 CONCLUSIONS

The study has been successful in demonstrating, down to a
detailed design, how software fault tolerance could be
applied to an ATC system. An implementation of this design
in the form of a demonstrator would enable a valuable cost
benefit evaluation to be made. The study has also produced
a requirements analysis of parts of LATCC using the CORE
method and this analysis has been a catalyst in CAA adopting
the CORE method for some of its study and experimental work.
The method could become more widely acceptable both in CAA
and MOD if an inexpensive and effective CORE workstation was
available. CAA(DPl) has contracted System Designers to
provide enhancements to the CORE/Analyst software which,
together the new MacintoshIl computer, would provide a
solution.

The recommendation to integrate CORE and MASCOT has
been taken up with a research study being placed by
DPE(R&DP) with RMCS to use the AUTOG software (reference 11)
as the basis for an integrated environment.

CAA have also agreed in principle to support a study on
the use of formal methods as applied software fault
tolerance with RMCS. This would complement the work on the
application of formal methods to ATC systems already being
undertaken by the ATC systems research division at RSRE.

6 ACKNOWLEDGEMENTS

Many individuals contributed to the success of this study.
The design reviews were conducted by Mr.C.Young and
Mr.A.McDowall of ARE (1st review), and Prof.T.Anderson of
Newcastle University and Mr.D.Hatton of LATCC (2nd review).
Mr.Hatton also made significant contributions during the
detailed design work. After many tribulations, the CORE
workstations were procured by the CAA liaison officers and
the author. Credit is also due to the contractors,
Professor M.R.Moulding (RMCS) and Mr.P.Barrett (MARI) for
the additional effort they put into the study.



Page 10

7 REFERENCES

1. List of Reports from the contract:
a) High-level Analysis of LATCC, RMCS Reference 1049/TD.1,
August 1986.
b) Detailed Analysis of LATCC, RMCS Reference 1049/TD.2,
October 1986.
c) High-level Design for the Demonstration System, RMCS
Reference 1049/TD.3, August 1986.
d) Detailed Design of the Demonstration System, RNCS
Reference 1049/TD.4, October 1986.
e) Application of Software Fault Tolerance to Air Traffic
Control Systems, RMCS Reference 1049/TD.5, November 1986.
f) Project Final Report, RMCS Reference 1049/TD.6, September
1987.

2. B. Randell, System Structuring for Software Fault
Tolerance, IEEE Trans. SE-1 (2), pp. 220-232, 1975.

3. T. Anderson, P.A.Barrett, D.N.Halliwell, and
M.R.Moulding, Software Fault Tolerance: An Evaluation, IEEE
Trans SE-11(12), Dec. 1985.

4. M. R. Moulding, An Architecture to Support Software
Fault Tolerance and an Evaluation of its Performance in a
Command and Control Application, Digest IEE Colloquium on
Performance Measurement and Prediction, Feb. 1986.

5. B. q. Boehm, Software Engineering Economics, Englewood
Cliffs, N': Prentice Hall, 1981.

6. P. N. Melliar Smith, Development of Software Fault
Tolerance Techniques, NASA Contractor Report 172122, March
1983.

7. MASCOT Suppliers Association, The Official Handbook of
MASCOT, RSRE, Malvern, UK, 1980.

8. G. P. Mullery, CORE: Method for Controlled
Requirements Expression, Proc. IEEE Fourth International
Conference on Software Engineering, New York, 1979.

9. T. Anderson and P. A. Lee, Fault Tolerance:
Principles and Practice, Prentice Hall, 1981.

10 H.Hecht and M.Hecht, Software reliability in the system
context, IEEE Trans. Software Engineering, SE-12, No.1,
January 1986.

11. G.Hemdal and C.Coombs, Softchip Technology: a new
architecture for telecommunications and other real time
systems, 6th. International Conference on Software
Engineering for Telecom. Switching Systems, Eindhoven,
April 1986.

12. D.J.Hartin, Dissimilar software in high integrity
applications in flight controls, AGARD Conference
proceedings No.330, 1982, pp. 36-1 to 36-13.

13. A.D.Hills, Digital Fly by Wire, AGARD Lecture Series
No.143, 1985.



Page 11

APPENDIX 1

A.1 OVERVIEW OF SOFTWARE FAULT TOLERANCE

Fault tolerance and fault prevention are two approaches to
achieving reliability in systems. Fault prevention is
concerned with using methods, techniques and technologies
that aim to avoid faults existing in the operational system.
It is the normal approach to reliability and involves the
activities of fault avoidance and fault removal. Fault
avoidance tries to exclude faults by use of the appropriate
design and construction methods: examples of its use are
the selection of reliable components and the adoption of
good design methods. Fault removal attempts to locate and
remove as many faults as possible by extensive testing,
validation and verification.

Of course, fault prevention should not be expected to
eradicate all faults, and it may be necessary to construct
systems, usually involving redundant components, that
tolerate faults and hence prevent system failure. Fault
tolerance schemes require a combination of some or all of
the activities of error detection, damage confinement, error
recovery, and fault removal to reach the required
reliability. Such schemes are well established in hardware
systems where the physical nature and failure statistics of
transients and component ageing are sufficiently understood
that reliability predictions can usually be made with some
confidence. In contrast, software faults are design faults
and a software fault is either present or not present. Thus
software does not have transients or wear out in the
hardware sense. However, software faults may manifest
themselves as errors in a computer system in such a way that
the errors have characteristics similar to hardware failures
(for example reference 10 describes an ageing characteristic
arising through maintenance).

The various schemes for Software-fault tolerance can be
described with the help of the diagram below in which the
modules are different implementations from the same
specification and the adjudicator makes decisions about the
results from execution of the modules.

I I
-->I(primary) I

/ I module 0/\
/ \_ _

/ "\I
-- -> "----------->1 adjudicatorl ---- >

----/ II\ " /
\ /
\ I I /

-- >I module n /
I I

SOFTWARE FAULT TOLERANCE SCHEMATIC



Page 12

The two main schemes are the recovery blocks scheme, which
is relevant to this report and is described below, and the
n-version scheme, in which the modules run concurrently and
the adjudicator is typically a majority voter.

A.1.1 Recovery Blocks

In the recovery blocks scheme, the modules are executed
serially until a module passes the acceptance test that is
embodied in the adjudicator. A recovery block will have a
syntax of the form

ENSURE acceptance test
BY primary module
ELSEBY 1st alternate

ELSE BY nth alternate
ELSEERROR.

To ensure alternates can execute from the same
consistent state as the primary module, the system state is
stored on entry to a recovery block, and restored before an
alternate is executed. These snapshots of the system state
are referred to as recovery points. The concept of nested
recovery blocks extends to sequential programs without
difficulty.

However, in a system of concurrent interacting
processes, recovery presents a problem because recovery of a
process will normally include recovery of its interprocess
communication data which in turn may force processes that
have used or are using this data to recover. This backward
recovery will need to continue until a consistent state is
reached, and unless recovery is coordinated properly, a
"domino" effect is likely and extensive restoration, even
back to the initial system state, may occur. Particularly
in a real time system such uncoordinated recovery is
unacceptable.

A scheme for providing coordinated recovery in a MASCOT
based system has been developed (references 3 and 4) in
which a common recovery point is provided for predefined
subsets of concurrent processes (Activities in MASCOT) and
their intercommunicating data areas (IDAs of Pools and
Channels in MASCOT). These predefined subsets of Activities
and IDAs are called "dialogues" and are essentially a MASCOT
specific version of the generalized "conversation" principle
proposed in reference 2. Thus activities executing within a
dialogue are constrained to access only those IDAs which are
associated with that particular dialogue. The following
paragraphs, taken from the final report (reference if) give
more details about the dialogue scheme.

4"__



Page 13

"Upon initial entry into a dialogue, an activity will

become descheduled until all associated IDA'S can be claimed
by that dialogue. Thereafter, any other activity which
wishes to enter the same dialogue may proceed without
further delay. When an activity wishes to discard a
recovery point (i.e. exit from a recovery block) it must
wait for all other activities which have entered that
dialogue to reach the same point in their processing. Then,
and only then, can the dialogue be completed, its IDA
resources released, and all participating activities allowed
to discard recovery points and proceed with their
processing. Conversely, if an activity wishes to recover,
then all participating activities must also be recovered
along with the IDA's of the dialogue. Thus the dialogue
allows a number of activities to co-ordinate their recovery
for a limited period of processing.

It follows from the description above that a dialogue
effectively owns an IDA for the period of its activation.
If an unrecoverable activity wishes to access an IDA, it
must wait until that IDA is no longer owned by a dialogue
(becomes quiescent). When it does access the IDA, that IDA
becomes unrecoverable and can only be accessed by
unrecoverable activities. When all unrecoverable activities
have finished their accessing, the IDA will revert to its
quiescent state and may then be claimed by a dialogue. In
keeping with the requirement for multi-level recovery within
a system, dialogues may be nested; an inner dialogue will
consist of a subset of the IDAS and activities of the outer
dialogue and when activated will automatically claim
ownership of the appropriate IDA's, thus suspending the
outer dialogue."

It is implicit in the preceding discussion that all
IDAs of a dialogue are backward recovered when the dialogue
is recovered. In some circumstances, however, it is more
appropriate to provide forward recovery for an IDA. One
example of this is where an IDA, holding the time-of-day, is
forward recovered to ensure that it holds the current time
following recovery. Forward recovery is also used to
provide a means of interfacing between recoverable and
non-recoverable subsystems.

In order to support the software fault tolerance scheme
described above, the MASCOT (virtual) machine must be
extended to provide recovery blocks and ASCOT construction
and run-time facilities for dialogues. Further details of
such extensions are given in reference le.

Ii



Page 14

APPENDIX 2

DISTRIBUTION OF EFFORT

1 CORE Analysis 16 man weeks

2 High-level design 6 man-weeks

3 Detailed design 14 Man weeks

4 Application of Software fault tolerance 11 man-weeks

5 Final report 5 man-weeks

APPENDIX 3

SIZE OF STRUCTURED ENGLISH -PDL

Lines of PDL
Non-FT FT % increase

Radar Processing Activity 163 163 -

Correlation Activity 478 566 18

Tracking Activity 1019 1644 61

Command Interpreter Activity 24 24 -

Track Table Updating Activity 348 355 2

Route Display Activity 22 22 -

Database Update Injection Activity 177 276 56

Flight Plan Maintenance Activity 20 36 80

Track/Plan Matching Activity 69 84 22

Flight Plan Activation Activity 12 28 33

IDA Access Mechanisms 223 352 58

Totals 2555 3550 39



r Li

i U ,



.j

.0

cc

UL

aL
a.K

C4

'C,

I-z



OOCUNEN1 CONTRO. SHEET

Overall security classification ....... UNCLASSIFIE .............................................

(is for as possible this sheet should contain only unclassified Inforsation. If it Is necessary to eoter
classified Information. the box concerned must be marked to indicate the classification e9 (R) (C) or (S) I

1. ORIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Reort Security
Memo 4114I Classificatiom

Io I UNCLASSIFIED
5. Originator's Code (if 6. Originator (Corporate Author) Noa, and Location

knowr.)
7784000

5a. Sponsoring agency's 6s. Sponsoring Agency (Contract Authority) lae and Location

Code (if known)

2145000 Civil Aviation Authority, London

7. Title
The application of software fault tolerance to Air Traffic Control:
Study contract overview

7h. Title in roreign Language (in the case of translations)

7b. Presented at (for conference nopers) Title. place and date of conference

S. Author 1 Surname, initiss g(a) Author 2 9(b) Authors 3,4... 10. Date pp. ref.

SIMCOX. L N 06.1988 16

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

UNLIMITED

Descriptors (or keywords)

Fault tolerance Recovery blocks
Software MASCOT
Air Traffic Control CORE

continue an separate piece of eaper

Abtcact

An overview of a study carried out by the Royal Military College of Science
(RMCS) and its subcontractor, the Microelectronics Application Research
Institute (MARI), is given. In the study a requirements analysis of the

London Air Traffic Control Centre (LATCC) was developed, using the CORE method
with automated support. This analysis was used as the basis for a detailed

design of the LATCC Radar Data Processing subsystem. This design was converted
into one with the software fault tolerant features of Recovery Blocks in a
MASCOT-like environment. . . -, '

580165

_______________________________ .


